University of Batna 2
Faculty of Technology
Department of Science and Technology LMD

Module: Chemistry 1

Tutorial Series Nº 4

Exercise 1 (Crookes Tube)

If the potential difference between the two electrodes is U, in a tube that emits electrons, the distance between the anode and the cathode is (L).

- 1. Show that the expression for the kinetic energy of electrons emitted from the cathode toward the anode does not depend on L.
- 2. Calculate the velocity acquired by the electrons when the applied potential difference is $U=5\times10^4~V$.

Given data for numerical calculations:

$$e=1.6\times10^{-19} \text{ C}, \text{ m}=9.1\times10^{-31} \text{ kg}$$

Exercise 2

An iron atom and an electron have respective masses close to: m_{Fe} =9.1×10⁻²⁸ g, m_e =9.3×10⁻²³ g

An iron atom contains 26 electrons.

- 1. What is the ratio of the total mass of electrons to the mass of the atom?
- 2. Based on this result, by what approximation can we compare the mass of the nucleus to the mass of the atom?
- 3. The volumetric mass of iron is ρ =7.68 g/cm³. If the diameter of the nucleus is 10,000 times smaller than that of the atom, what is the approximate density of the nucleus in tonnes/mm³?

Exercise 3 (Millikan's Experiment)

Between the plates of a capacitor (assumed horizontal), there is a small oil droplet with a radius $r = 9.57 \times 10^{-4}$ cm, and the volumetric mass of the oil is $\rho = 0.9604$ g/cm³. A uniform electric field of $E = 9.37 \times 10^5$ V/m is applied between the plates. At a certain moment, the droplet appears to be stationary.

Determine the number of elementary charges q carried by the droplet, given that Stokes' forces are negligible.

Exercise 4

Among the following atoms: ${}^{29}_{14}Si$ ${}^{35}_{17}Cl$ ${}^{35}_{16}S$ ${}^{35}_{18}Ar$ ${}^{30}_{14}Si$ ${}^{37}_{17}Cl$ ${}^{35}_{15}P$ ${}^{28}_{14}Si$ ${}^{33}_{17}Cl$ ${}^{33}_{16}S$ ${}^{34}_{17}Cl$

Identify: the isotopes, the isobars, and the isotones, and define each term.

Exercise 5

- 1. Define the natural isotopic abundance, usually denoted x_i.
- 2. Define the atomic molar mass of an element.
- 3- The element tellurium (Te) has four natural isotopes:

```
<sup>126</sup>Te: 33.333%, <sup>128</sup>Te: 33.333%, <sup>129</sup>Te: 16.666%, <sup>131</sup>Te: 16.666%.
```

Compute the atomic molar mass of tellurium.

Exercise 6 (The Cambridge Mass Spectrometer)

Natural magnesium (¹²⁴Mg, ¹²⁵Mg, and ¹²⁶Mg) consists of three isotopes with mass numbers 24, 25, and 26, having respective abundances n₁, n₂, n₃. In a mass spectrometer, the Mg²⁺ ions are accelerated by a potential difference U between the slits f₁ and f₂. Afterwards, these ions enter through slit f₃ into a region where a magnetic field (B) is applied perpendicular to their trajectories, allowing the detection of the following ions.

- 1. Calculate the potential difference U that allows the detection of the ions $^{24}Mg^{2+}$, $^{25}Mg^{2+}$, $^{26}Mg^{2+}$ successively in slit f_3 .
- 2. Behind the analyzer, the discharge currents have respective intensities i_1 , i_2 , i_3 proportional to n_1 , n_2 , n_3 . It is found that: $i_3/i_2 = 1.5$, and $i_1/i_2 = 10$.

Determine the natural isotopic abundances n_1 , n_2 , n_3 and the approximate atomic mass of natural magnesium.

Notes: - The two questions are independent.

- There is no magnetic field in the velocity selector.

```
Given data: B = 0.5 \text{ T}, f_2 f_3 = D = 40 \text{ cm}, f_1 f_2 = d = 4 \text{ cm}.
```

Exercise 7

The radius R of a nucleus with mass number A is given empirically by: $R = R_0 \times A^{1/3}$ where $R_0 = 1.3 \times 10^{-15}$ m. For the aluminum nucleus $^{27}_{13}Al$:

- 1. Compute its mass (in kg).
- 2. Compute its volume (in m³).
- 3. Compute its volumetric mass (in kg/m³ and tonnes/cm³).
- 4. The volumetric mass of metallic aluminum is $\rho_{Al} = 2.7$ g/cm³. Determine the volume occupied by the nuclei in 1 cm³ of aluminum metal.
- 5. Are these results consistent with Thomson's model or with Rutherford's model of the atom?