
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION

AND SCIENTIFIC RESEARCH

UNIVERSITY OF MOSTEFA BENBOULAID BATNA 2

FACULTY OF TECHNOLOGY

DEPARTMENT OF COMMON CORE IN SCIENCE AND TECHNOLOGY

INFORMATICS 2 COURSE
First Year (S2) Common Core in Science and Technology

Dr. Salhi Hicham

Associate Professor, Class A

General introduction

1

Chapter I : The Indexed Variables

11.1. One-Dimensional Arrays 3

 1.1.1. Definition of an Array 3

 1.1.2. Main Characteristics of a One-Dimensional Array 3

 1.1.3. Declaration of a one-dimensional array 3

 1.1.4. Creation and writing of a one-dimensional array 4

 1.1.5. Displaying a one-dimensional array 4

 1.1.6. Operations on One-Dimensional Arrays 5

 1.1.6.1. Calculation of Sum and Average of Elements 5

 1.1.6.2. Calculation of Minimum and Maximum 6

 1.1.6.3. Testing Membership of an Element in the Array 6

 1.1.7 Application Exercises 7

1.2. Two-Dimensional Arrays (Matrices) 12

 1.2.1. Definition of a Matrix 12

 1.2.2. Main Characteristics of a Matrix 12

 1.2.3. Declaration of a Matrix 13

 1.2.4. Creation and Displaying of a Matrix 13

 1.2.5. Application Exercises 14

Chapter II: Functions and Procedures

2.1. Definition of a Subroutine 21

2.2. Functions 21

2.3. The procedures 23

2.4. Parameter Passing Modes 24

 2.4.1. Pass-by-Value (default) 24

 2.4.2. Pass-by-Reference 25

2.5 Application Exercises

Chapter III : The Recordings and files

26

3.1. Structure of Heterogeneous Data 33

3.2. Manipulation of Record Structures 33

 3.2.1 Definition 33

 3.2.2 Declaration 33

 3.2.3 Accessing Fields of a Record 35

 3.2.4 Operations on Records 36

 3.2.4.1 Initialization 36

 3.2.4.2 Assigning Values 36

 3.2.4.3 Comparison 36

 3.2.4.4 Copying 37

 3.2.5 A table as a field of a record 37

 3.2.6 An Array of Records 39

3.3. The Files 40

 3.3.1. Concept of a File 41

 3.3.2. File Access Modes 41

 3.3.3 Reading from and Writing to a File 41

3.4 Application Exercises 45

Bibliographie 61

H.Sallhi General introduction

1

General introduction

 Computer science is a discipline that encompasses art, technique, and science. It

utilizes the computer as a tool to define algorithms, solve complex problems, and extract

useful knowledge from disorganized data. It offers a creative, practical, and scientific

approach to addressing various fields and challenges.

The content of this educational document follows a classical approach. In the first

chapter, we focus on presenting two parts. The first part deals with one-dimensional arrays,

covering memory representation and associated operations. The second part concerns two-

dimensional arrays, encompassing memory representation and specific operations related to

these arrays.

In the second chapter of the document, the focus shifts to functions, addressing

different types of functions, function declaration, and function calls. It also explores

procedures, including concepts of global and local variables, simple procedures, and

procedures with arguments.

In the third chapter of the document, the emphasis is on records and files, covering the

following points :

 Structure of heterogeneous data and a record.

 Manipulation of record structures and an introduction to files.

Chapter I : The Indexed

Variables

H.Sallhi Chapter I : The Indexed Variables

 3

1.1. One-Dimensional Arrays:

 1.1.1. Definition of an Array:

 A one-dimensional array is a data structure in computer science that allows for storing and organizing

elements sequentially. It is a linear collection where elements are arranged one after another, forming

a continuous sequence.

1.1.2. Main Characteristics of a One-Dimensional Array:

Sequential Storage: Elements are stored sequentially in memory. Each element is placed one after

another, allowing for easy traversal from the first to the last element.

Fixed Size: Once defined, the size of the array remains constant throughout its lifetime. This means

the number of elements it can hold is predetermined and cannot be changed dynamically during

execution.

 Direct Access: Elements are accessed using their index position. Each element in the array has a

unique index starting from 0 (for the first element) to n−1n-1n−1 (for the nth element, where nnn is

the size of the array).

 Homogeneous Data Type: All elements in a one-dimensional array must be of the same data type

(e.g., integer, float, character). This ensures that each element occupies the same amount of memory

and simplifies memory management and access operations.

Contiguous Memory Allocation: Elements of the array are stored in contiguous memory locations.

This means that the memory addresses of consecutive elements in the array are adjacent to each other,

which allows for efficient memory access and traversal.

1.1.3. Declaration of a one-dimensional array :

In Pascal, the declaration of a one-dimensional array follows this syntax:

Var name: array [<min index> .. <max index>] of <component type>;

Exemple:

Write a Pascal program that declares a one-dimensional array, initializes its elements, and then

displays some values on the screen.

I=1 I=2 I=3 I=4 I=5 I=6

20 25 40 55 69 76

program Table;

var tab: array[1..6] of Integer;

begin

 tabl [1] := 20; tabl [2] := 25;

H.Sallhi Chapter I : The Indexed Variables

 4

 tabl [3] := 40; tabl [4] := 55;

 tabl [5] := 69; tabl [6] := 76;

 writeln(' The first element of the array is: ', tabl[1]);

 writeln(The second element of the array is: ', tabl[3]);

end.

 1.1.4. Creation and writing of a one-dimensional array:

In Pascal, creating and writing to a one-dimensional array is done as follows:

I=1 I=2 I=3 I=4 I=5 I=6

20 25 40 55 69 76

program CreationTable;

var T: array[1..6] of Integer;

 i: Integer;

begin

 for i := 1 to 6 do

 begin

 writeln ('T=');

 Read (T[i]);

 end;

End.

1.1.5. Displaying a one-dimensional array:

To display a one-dimensional array in Pascal, you can use a for loop to iterate through the elements

of the array and print them.

Exemple

Write a program to create an Integer array T1 of size 6 through user input. Additionally, create another

array T2 of the same size, where each element T2[i] is three times T1[i].

Solution:

This Pascal program accomplishes the following steps:

 Asks the user to input values for array T1.

 Creates array T2 by tripling each corresponding element of T1.

 Displays the values of T2.

program CreationTable;

var T1, T2: array[1..6] of Integer;

 i: Integer;

H.Sallhi Chapter I : The Indexed Variables

 5

begin

 writeln(' Input for array T1:');

 for i := 1 to 6 do

 begin

 write(' Enter the value for T1[' , i, '] : ');

 readln(T1[i]);

 end;

 writeln('Création T2 :');

 for i := 1 to 6 do

 begin

 T2[i] := 3 * T1[i];

 writeln('T2[' , i, '] = ' , T2[i]);

 end;

end.

1.1.6. Operations on One-Dimensional Arrays:

Operations on arrays are commonly used in programming to perform mathematical calculations on

the elements of an array, such as computing the sum and average of the elements, finding the

minimum and maximum values, and testing if an element belongs to the array.

1.6.1. Calculation of Sum and Average of Elements:

In this program, the user enters the size of the array. Then, the program dynamically allocates the

array based on this size. The elements of the array are inputted, and subsequently, the sum and average

are computed. Finally, the program displays the results.

program Sum_av;

var T: array[1..6] of Integer;

 var som,i: Integer;

 moy: Real;

Begin

 for i := 1 to 6 do

 begin

 write('Enter the value for T[', i, '] : ');

 readln(T[i]);

 end;

som := 0;

for i := 1 to 6 do

begin

H.Sallhi Chapter I : The Indexed Variables

 6

 som := som + T [i];

end;

writeln('som= ', som);

moy := som / 6;

writeln(' moy= ', moy);

end.

1.1.6.2. Calculation of Minimum and Maximum:

In this program, the user first enters the size of the array. Then, the program dynamically allocates an

array based on the specified size. The elements of the array are inputted, and afterward, the program

searches for the minimum and maximum values.

program max_min;

var T: array[1..6] of Integer;

 var min, max,i: Integer;

Begin

 for i := 1 to 6 do

 begin

 write('Enter the value for T[', i, '] : ');

 readln(T[i]);

 end;

min := T[1];

max := T[1];

for i := 2 to 6 do

begin

 if T[i] < min then

 min := T[i];

 if T[i] > max then

 max := T[i];

end;

writeln('Min= ', min);

writeln('Max= ', max);

End.

1.1.6.3. Testing Membership of an Element in the Array:

To test the membership of an element in an array in Pascal, you can use a loop to iterate through the

array elements and check if the searched element equals any of the elements in the array.

program Test_Membership;

H.Sallhi Chapter I : The Indexed Variables

 7

var T: array[1..6] of Integer;

 x,i: Integer;

 y: Boolean;

begin

 for i := 1 to 6 do

 begin

 write('Enter the value for T[', i, '] : ');

 readln(T[i]);

 end;

 write(' Enter the element to search for: ');

 readln(x);

 y := False;

 for i := 1 to 6 do

 begin

 if (T[i] = x) then

 begin

 y := True;

 writeln(' The element is present in the array.')

 end

 else

 begin

 y := False;

 writeln('LThe element is not present in the array.');

 end;

 end;

End.

1.1.7 Application Exercises:

Exercise 1:

Write a Pascal program that calculates the sum and average of elements in a real array T of size N.

Solution:

program Sum_Aver;

var T: array[1..N] of real;

 sum, Ave: real;

 I,N: integer;

Begin

Write(' Enter the size of the array:');

Read(N);

H.Sallhi Chapter I : The Indexed Variables

 8

 writeln(' Enter the elements of the array:');

 for i := 1 to N do

 begin

 write('T[', i, '] = ');

 readln(T[i]);

 end;

 sum := 0;

 for i := 1 to N do

 begin

 sum := sum+ T[i];

 end;

 Ave := sum / N;

 writeln(The sum of the elements of the array is: ', sum);

 writeln('The average of the elements of the array is: ', Ave);

end.

Exercise 2:

Complete the program that asks the user for 10 real values corresponding to grades between 0 and

20, stores them in an array, and displays how many grades are greater than or equal to 10. (Assume

all entered values are valid between 0 and 20.)

Solution:

program Ex2;

var i , n :;

tab : ..;

begin

for i:=............. to do

 begin

writeln ('Enter note number',i);

..;

end;

n :=;

for i:=................. to do

if then

;

writeln('There are ', ,' note greater than or equal to 10');

end.

Solution:

H.Sallhi Chapter I : The Indexed Variables

 9

program Ex2;

var i , n : integer;

tab : array [1..10] of real;

begin

for i:=1 to 10 do

begin

writeln ('Enter note number',i);

readln (tab[i]);

 end;

n := 0;

for i:=1 to 10 do

if tab[i] >= 10 then

n := n+1;

writeln('There are ', n ,' note greater than or equal to 10');

end.

Exercise3:

Complete the program that asks the user for 20 integer values, stores them in an array T. Then, the

program places the even values from T into another array T1 and the odd values into array T2. Finally,

the values of T1 and T2 are displayed at the end.

program even_odd;

 var i , j,k : ...;

 T, T1, T2 : ...;

begin

for i:=....................... to do

begin

writeln (' Enter value number',i , ‘of T’);

end;

j:=.....................; k:=........................;

for i:=............. to do

begin

if (..) then

 begin

 ...;

 T1[j]:=;

 End

 Else

H.Sallhi Chapter I : The Indexed Variables

 10

 begin

 T2[k]:=;

 End;

j:=;

K:= ..;

End;

for i:=............. to do

writeln (' The value number' , i ,’ of T1 is: ‘,) ;

 for i:=............. to do

writeln (' The value number' , i ,’ of T2 is: ‘,) ;

end.

Solution:

program even_odd;

var i , j,k : integer;

 T, T1, T2 : array [1..20] of integer;

begin

for i:=1 to 20 do

begin

writeln (' Enter value number'',i , ‘of T’);

readln (T[i]);

end;

j:=1; k:=1;

for i:=1 to 20 do

begin

if (T[i]mod 2=0)then

begin

T1[j]:= T[i];

 j:= j+1;

End

Else

begin

T2[k]:= T[i];

 K:= k+1;

End; End;

for i:=1 to j-1 do

H.Sallhi Chapter I : The Indexed Variables

 11

 writeln (' The value number' , i ,’ of T1 is: ‘, T1[i]) ;

for i:=1 to k-1 do

 writeln ('The value number' , i ,’ de T2 is: ‘, T2[i]) ;

End.

Exercise 4:

Complete the program that asks the user for 10 real values, stores them in an array T, then asks for a

real value n, and finally displays the number of occurrences of n in T.

program occurrences;

var i , occ :;

 T : ..;

 n:;

begin

for i:=............ to do

begin

writeln ('Entre value number' ,i);

readln (...........................);

 end;

writeln ('Entre the value n ');

readln (......................);

occ :=;

for i:=................todo

if...............................then

occ:=..........................;

writeln('The number of occurrences of n in T is:',..........................);

end.

Solution:

program occurrences;

var i , occ : integer;

 T : array[1..10] of real;

 n:real;

begin

for i:=1 to 10 do

begin

writeln ('Entre value number', i);

readln (T[i]) ;

end;

H.Sallhi Chapter I : The Indexed Variables

 12

writeln ('Entre the value n ');

 readln (n);

occ := 0;

for i:=1 to 10 do

if (T[i] = n) then

occ:= occ+1;

writeln('The number of occurrences of n in T is: ', occ);

end.

1.2. Two-Dimensional Arrays (Matrices)

1.2.1. Definition of a Matrix:

A matrix is a two-dimensional data structure composed of elements arranged in rows and columns.

Each element of the matrix is identified by its row and column indices. It can be viewed as a

rectangular array of elements, where each element is accessible by two indices.

The general notation for a matrix is as follows:

La notation générale d'une matrice est la suivante :

 Columns 1..n

where:

 m is the number of rows,

 n is the number of columns.

For example, in the matrix above, (a32) represents the element located in the third row and second

column.

Matrices can have different sizes, such as square matrices (same number of rows and columns) or

rectangular matrices (different numbers of rows and columns).

Matrices are commonly used in various fields of mathematics, physics, computer science, and other

disciplines to represent and manipulate structured data.

1.2.2. Main Characteristics of a Matrix:

The main characteristics of a matrix include its order, elements, transpose, operations (addition and

multiplication), diagonal, and determinant (for square matrices).

Ordre : The order of a matrix refers to the number of rows and columns it has. It is generally expressed

as m×n, where m is the number of rows and n is the number of columns.

a11 a12 a13 …… a1n

Rows 1…m a21 a22 a23 ….. a2n

a31 a32 a33 …… a3n

.

.
.
.

.

.
.
.

.

.
am1 am2 am3 … amn

H.Sallhi Chapter I : The Indexed Variables

 13

Éléments : Les éléments d'une matrice sont les valeurs individuelles situées à chaque intersection de

ligne et de colonne. Ils sont généralement notes aij, où i est le numéro de ligne et j est le numéro de

colonne.

Elements: The elements of a matrix are the individual values located at each intersection of a row

and a column. They are typically denoted as aij, , where i is the row number and j is the column

number.

Transpose: The transpose of a matrix is obtained by swapping its rows and columns. If A is an m×n

matrix, then its transpose, denoted as AT, is an n×m matrix where the rows of A become the columns

of AT and vice versa.

Matrix Operations:

 Addition: Two matrices can be added if they have the same dimensions. Addition is

performed element-wise.

 Multiplication: The rules for matrix multiplication depend on their dimensions. In general,

the product of an m×p matrix A with a p×n matrix B results in an m×n matrix C.

Diagonal: A square matrix has a main diagonal running from the top-left to the bottom-right corner.

The elements on this diagonal are those where i=j.

Determinant: The determinant is a characteristic of square matrices. It is used in various applications,

particularly to determine if a matrix is invertible. The computation of the determinant depends on the

size of the matrix.

1.2.3. Declaration of a Matrix:

In Pascal, a matrix is declared as follows. Suppose you want to declare a matrix of size M×N:

program Declaration_Matrix;

var Matrix: array[1..M, 1..N] of integer;

begin

Your code

end.

1.2.4. Creation and Displaying of a Matrix:

To display a matrix in Pascal, we can use two nested loops to iterate through each element of the

matrix, prompt the user to enter values, and then display the matrix on the screen. You can adjust the

values of M and N based on the desired size for your matrix.

program Creation_Matrix;

var A: array[1..M, 1..N] of integer;

 i, j: integer;

begin

H.Sallhi Chapter I : The Indexed Variables

 14

readln (M , N);

 writeln(' Enter the elements of the matrix.:');

 for i := 1 to M do

 begin

 for j := 1 to N do

 begin

 write('A[' , i, ',' , j, '] = ');

 readln(A[i, j]);

 end;

 end;

Displaying the matrix

 writeln('The matrix you entered is:');

 for i := 1 to M do

 begin

 for j := 1 to N do

 begin

 write (A[i, j]:4, ' ');

 end;

 end;

end.

1.2.5. Application Exercises:

Exercise 1:

Consider a matrix M of 8 rows and 5 columns of real numbers. We propose completing the Pascal

program that allows reading the elements of M, then determining the maximum value of this matrix

as well as the row and column to which this maximum value belongs.

Program Matrix;

Var M :.................................... ;

 i, j, imax, jmax :............... ;

 valmax :....................... ;

begin

for i :=...........to......do

for j:=............to.......do

readln(..................);

valmax:=....................; imax:=..............; jmax:=...............;

for i := 1 to...........do

for j:=................to...............do

H.Sallhi Chapter I : The Indexed Variables

 15

 begin

if then

begin

imax:=............; jmax:=..............; valmax:=..............;

end;

end;

writeln('The maximum value of M is: ',……., ', located in row ',……, ' and column ',………..');

End.

Solution:

Program Matrix;

Var M :array [1..8,1..5] of real ;

 i, j, imax, jmax :integer ;

 valmax :real;

begin

for i :=1 to 8 do

for j:= 1 to 5 do

readln(M[i,j]);

valmax:=M[1,1]; imax:= 1; jmax:= 1 ;

for i := 1 to 8 do

for j:= 1 to 5 do

 begin

if (M[i,j] > valmax) then

begin

imax:= I ; jmax:= j ; valmax:= M[i,j];

end;

end;

writeln('The maximum value of M is: ', M[i,j], ', located in row ', imax, ' and column ', jmax);

End.

Exercise 2:

A is a square matrix of order 10 with real coefficients (10 rows and 10 columns). Complete the

program that prompts for input of the coefficients of matrix A, displays it, and then calculates and

displays the sum of the diagonal elements of A.

PROGRAM Matrix ;

VAR A, B :.................... ;

 i, j : ;

H.Sallhi Chapter I : The Indexed Variables

 16

 s : ;

BEGIN

FOR i := TO DO

FOR j := TO DO

BEGIN

WRITE (’ A[’,i,’,’ ,j,’]=’);

READLN (......................);

END;

FOR i := TO DO

BEGIN

FOR j:= To DO

WRITE(.....................,’—‘);

END;

s :=;

FOR i := TO DO

s:=;

Writeln(‘The sum of the diagonal elements is: ’,);

 END.

Solution:

PROGRAM Matrix ;

VAR A :array [1..10,1..10] of real;

 i, j : integer;

 s : real;

BEGIN

FOR i := 1TO 10 DO

FOR j := 1TO 10 DO

BEGIN

WRITE (’ A[’,i,’,’ ,j,’]=’);

READLN (A[i,j]);

END;

FOR i := 1TO 10 DO

BEGIN

FOR i := 1TO 10 DO

WRITE(A[i,j],’—‘);

WRITELN;

END;

H.Sallhi Chapter I : The Indexed Variables

 17

s := 0;

FOR i := 1 TO 10 DO

s:= s+ A[i,i];

Writeln (‘The sum of the diagonal elements is:’, s);

 END.

Exercise 3:

Write a Pascal program that calculates the sum of two matrices A and B, each containing 5 rows and

4 columns.

Solution:

program Sum_Matrix;

var. A, B, Sum: array[1..5, 1..4] of integer;

 i, j: integer;

begin

 writeln(' Enter the elements of matrix A:');

 for i := 1 to 5 do

 for j := 1 to 4 do

 begin

 write('A[', i, ',', j, '] = ');

 readln(A[i, j]);

 end;

 writeln(' Enter the elements of matrix B :');

 for i := 1 to5 do

 for j := 1 to 4 do

 begin

 write('B[', i, ',', j, '] = ');

 readln(B[i, j]);

 end;

 for i := 1 to 5 do

 for j := 1 to 4 do

 Sum[i, j] := A[i, j] + B[i, j];

 writeln('sum of matrix A and B :');

 for i := 1 to 5 do

 begin

 for j := 1 to 4 do

 write(Sum[i, j]:4, ' ');

 writeln;

H.Sallhi Chapter I : The Indexed Variables

 18

 end;

End.

Exercise 4:

Write a Pascal program that calculates the transpose of a matrix A with 3 rows and 4 columns.

Solution:

program Tran_Matrix;

var A, Tr : array[1..3, 1..4] of integer;

 i, j: integer;

begin

 writeln(' Enter the elements of matrix A:');

 for i := 1 to 3 do

 for j := 1 to 4 do

 begin

 write('A[', i, ',', j, '] = ');

 readln(A[i, j]);

 end;

 for i := 1 to 3 do

 for j := 1 to 4 do

 Tr [j, i] := A[i, j];

 writeln(The transpose of matrix A is:');

 for i := 1 to 4 do

 begin

 for j := 1 to 3 do

 write(Tr[i, j]:4, ' ');

 writeln;

 end;

End.

Exercise 5:

Write a Pascal program that calculates the sum of the elements on the diagonal of a square matrix of

order 4.

Solution:

program Diagonal;

var M: array[1..4, 1..4] of integer;

 i, j, SD: integer;

begin

H.Sallhi Chapter I : The Indexed Variables

 19

 writeln(' Enter the elements of matrix M:');

 for i := 1 to 4 do

 for j := 1 to 4 do

 begin

 write('M[', i, ',', j, '] = ');

 readln(M[i, j]);

 end;

 SD:= 0;

 for i := 1 to 4 do

 SD:= SD + M[i, i];

 writeln('The Matrix M:');

 for i := 1 to 4 do

 begin

 for j := 1 to 4 do

 write(M[i, j]:4, ' ');

 writeln;

 end;

 writeln('sum of the elements of the diagonal is : ', SD);

End.

Exercise 6:

Write a Pascal program that calculates the product of two matrices A and B with dimensions 4×4.

Solution:

program Prod_Matrix;

var A, B, P: array[1..4, 1..4] of integer;

 i, j, k: integer;

begin

 writeln(' Enter the elements of matrix A :');

 for i := 1 to 4 do

 for j := 1 to 4 do

 begin

 write('A[', i, ',', j, '] = ');

 readln(A[i, j]);

 end;

 writeln(' Enter the elements of matrix B :');

 for i := 1 to 4 do

H.Sallhi Chapter I : The Indexed Variables

 20

 for j := 1 to 4 do

 begin

 write ('B[', i, ',', j, '] = ');

 readln (B[i, j]);

 end;

 for i := 1 to 4 do

 for j := 1 to 4 do

 P [i, j] := 0;

 for i := 1 to 4 do

 for j := 1 to 4 do

 for k := 1 to 4 do

 P[i, j] := P[i, j] + A[i, k] * B[k, j];

 writeln(' The product of matrices A and B is :');

 for i := 1 to 4 do

 begin

 for j := 1 to 4 do

 write(P [i, j]:6, ' ');

 writeln;

 end;

End.

Chapter II: Functions and

Procedures

H.Sallhi Chapter II: Functions and Procedures

21

2.1. Definition of a Subroutine:

 The definition of a subroutine involves declaring a distinct and reusable portion of code within a

main program. This code segment, often referred to as a function or procedure, performs a specific

task and is characterized by input and output parameters. Using subroutines enhances code modularity

and clarity, as specific functionalities can be isolated and handled independently of the rest of the

program.

The structure of a subroutine typically includes a header detailing the name, return type (for

functions), and parameters, followed by an executable code block. This approach facilitates code

maintenance, reusability, and comprehension.

2.2. Functions:

 In a programming language, a function is a self-contained block of code designed to perform a

specific task and return a result. A function is characterized by a unique name, a return type that

specifies the data type of the value returned by the function, and optionally input parameters that

allow values to be passed into the function.

The structure of a function is defined as follows:

function function_name(parameters: parameter_types): return_type;

var

 local_variables: types_local_variables;

 result: return_type;

begin

 { ... in the body, perform operations on result ... }

 { assign the result value }

 function_name := result;

end;

In this structure:

function_name: The name of the function.

parameters: parameter_types: The input parameters and their data types.

return_type: The data type of the value the function will return.

local_variables: Local variables used within the function, with their data types.

result: A variable of the return type where the function’s result is stored.

function_name := result;: The result of the function is assigned to the function name, which is how

the function returns its value.

Example:

H.Sallhi Chapter II: Functions and Procedures

22

A simple example of a function in Pascal. This program asks the user for two numbers, calls a

function to calculate their sum, and then displays the result.

program Fonction_sum;

Function declaration

function Summ (a, b: Integer): Integer;

var

 sum: Integer;

begin

 sum := a + b;

 Summ:= sum;

End;

Var x1, x2, R: Integer;

begin

 write('x1= ');

 readln(x1);

 write('x2= ');

 readln(x2);

Calling the function

 R := Summ(x1, x2);

 writeln('The sum is : ', R);

end.

Another example of a function in Pascal. This time, the function takes a number as input, performs

a mathematical operation, and returns the result:

program Fonction_carre;

Function declaration

function Square (a: Integer): Integer;

begin

 Square:= a * a ;

end;

var x, res: Integer;

begin

 write('x=');

 readln(x);

Calling the function

 res:= Square (x);

H.Sallhi Chapter II: Functions and Procedures

23

 writeln('Square of ', x, ' is : ', res);

end.

2.3.The procedures:

A procedure in Pascal is a subroutine that performs a specific task without returning an explicit

value. Unlike a function, which returns a value, a procedure is designed to execute actions without

producing a specific result.

The structure of a procedure is defined as follows:

program Exe_Procedure;

 #Procedure Declaration

procedure nam_Procedure(a1: Integer; a2: Integer);

var sum: Integer;

begin

 sum := a1 + a2;

 writeln(' The sum is : ', sum);

#No explicit return is necessary for a procedure

end;

var x1, x2: Integer;

begin

 write (' Enter the first number: ');

 readln (x1);

 write ('Enter the second number: ');

 readln (x2);

Calling the procédure

 nam_Procedure(x1, x2);

End.

Example:

A simple example of a procedure in Pascal that asks the user for two numbers, calls the procedure to

calculate their product, and then displays the result:

program Procedure_Prod;

procedure Product (a, b: Integer);

var P : Integer;

begin

 P := a * b;

 Writeln ('The product is : ', P);

end;

var x, y: Integer;

H.Sallhi Chapter II: Functions and Procedures

24

begin

 write(' Enter the first number ');

 readln(x);

 write(' Enter the second number: ');

 readln(y);

 Product (x, y);

End.

Another example of a procedure in Pascal that takes a number as input, calculates its factorial, and

then displays the result:

program Procedure_Facto;

procedure Factorial (x: Integer);

var i, R: Integer;

begin

 R := 1;

 for i := 2 to x do

 R := R * i;

 writeln('the Factorial of ', x, ' is : ',R);

end;

var y: Integer;

begin

 write ('Enter the number : ');

 readln (y);

 Factorial(y);

End.

2.4. Parameter Passing Modes:

In programming, the parameter passing mode refers to the method by which values are transmitted

to a function or procedure. There are several parameter passing modes, each with implications for

how data is handled. The main parameter passing modes are as follows:

2.4.1. Pass-by-Value (default):

 The actual value of the parameter is passed to the function or procedure.

 Changes made to the parameter inside the function do not affect the original variables.

 This is the most commonly used parameter passing mode.

H.Sallhi Chapter II: Functions and Procedures

25

Example in Pascal:

procedure PassByValue(x: Integer);

begin

 x := x + 1; { Changes are not reflected outside the procedure }

end;

program PassByValueExample;

{ Declaration of the procedure with a parameter passed by value }

procedure ModifyValue(x: Integer);

begin

 x := x + 1; { Changes are not reflected outside the procedure }

end;

var

 n: Integer;

begin

 n := 10;

 { Calling the procedure with pass-by-value }

 ModifyValue(n);

 { Display the result }

 writeln('The unmodified value is: ', n);

end.

2.4.2. Pass-by-Reference:

The memory address of the parameter is passed to the function or procedure.

Changes made to the parameter inside the function affect the original variables.

Example in Pascal:

procedure PassByReference(var x: Integer);

begin

 x := x + 1; { Changes are reflected outside the procedure }

end;

program PassByReferenceExample;

{ Declaration of the procedure with a reference parameter }

procedure ModifyReference(var x: Integer);

begin

 x := x + 1; { Changes are reflected outside the procedure }

H.Sallhi Chapter II: Functions and Procedures

26

end;

var

 n: Integer;

begin

 n := 10;

 { Calling the procedure with pass-by-reference }

 ModifyReference(n);

 { Display the result }

 writeln('The modified value is: ', n);

end.

2.5. Application Exercises:

Exercise 1:

Write a program that calculates the first 10 factorials using a function.

Solution:

program factorials;

function Factorial(n: Integer): Integer;

var i, r: Integer;

begin

 r := 1;

 for i := 2 to n do

 r := r * i;

 Factorial:= r;

end;

var i: Integer;

begin

 writeln('The first 10 factorials are:');

 for i := 1 to 10 do

 writeln(' factorials of ', i, ' : ', Factorial(i));

End.

Exercise 2:

Write a procedure in Pascal that prompts the user to enter a number N between 1 and 10 until a valid

number is provided.

Solution:

program Request_Number;

procedure number (var N: Integer);

begin

H.Sallhi Chapter II: Functions and Procedures

27

 repeat

 Write('enter a number between 1 and 10:');

 Readln(N);

 until (N >= 1) and (N <= 10);

end;

var N1: Integer;

begin

number (N1);

 writeln(' You have chosen the number:', N1);

end.

Exercise 3:

Write a function in Pascal that requests a number X between 10 and 20 until a valid number is

provided. If the response is greater than 20, it should display a message: "Smaller!", and conversely,

"Larger!" if the number is less than 10.

Solution:

program Request_Number;

procedure Number (var X: Integer);

begin

 repeat

 Write('enter a number between 10 et 20 : ');

 Readln(X);

 if (X < 10) then

 writeln(' Larger!')

 else if (X > 20) then

 writeln(' Smaller!');

 until (X >= 10) and (X <= 20);

end;

var n: Integer;

Number (n);

 writeln(' You have chosen the number: ', n);

end.

Exercise 4:

Write a function in Pascal that takes a real number x and a non-negative integer n, and then

calculates x n.

Solution:

H.Sallhi Chapter II: Functions and Procedures

28

program Calculate_Power

function Power (x: Real; n: Integer): Real;

var r: Real;

 i: Integer;

begin

 r := 1.0;

 if n >= 0 then

 begin

 for i := 1 to n do

 begin

 r:= r * x;

 end;

 end

 else

 begin

 writeln('The exponent must be a non-negative integer.');

 end;

 Power := r;

end;

var x: Real;

 n: Integer;

 P: Real;

begin

 Readln(x,n);

 P := Power (x, n);

 writeln(x, '^', n, ' = ', P);

end.

Exercise 5:

1-Complete the absolute function, which takes a real parameter 𝑥 and returns the absolute value of 𝑥

Function absolute(…… :………….…………..):……………..;

Var R : real;

Begin

 If……………………………….………then R:=……………………………..

 Else R:=…………………………………………;

 absolute:=……………………………………..;

H.Sallhi Chapter II: Functions and Procedures

29

End.

2- Rewrite this function as a procedure.

Solution:

1-Complete the absolute function, which takes a real parameter 𝑥 and returns the absolute value of 𝑥

Function absolute(x:real):real;

Var R : real;

Begin

 If x < 0 then

 R:= -x

 Else R:= x ;

 absolute:= R ;

End.

2- procedure absolute(x:real; var R:real);

Begin

 If x < 0 then R:= -x

 Else R:= x ;

End.

Exercise 6:

Write a program that finds all prime numbers between 1 and 50 and displays them on the screen.

Reminder: a number is prime if and only if it has no divisors other than 1 and itself. Use a Prime

function that takes an integer as a parameter and returns true or false indicating whether the integer

is prime or not.

Solution:

Program ex6;

 Var i: integer;

 Function Prime (n: integer) : Boolean;

 Var j: integer;

 b:Boolean;

 Begin

 b:= true;

 for j:= 2 to (n-1) do

 if (n mod i)=0 then

 b:=false;

 Prime:=b;

end;

begin

H.Sallhi Chapter II: Functions and Procedures

30

 for i:= 2 to 50 do

 if Prime (i) then writeln (i); (* if Prime (i) is equivalent to if Prime (i) = true.*)

end.

Exercise 7:

Write a procedure named product that calculates the product of two complex numbers. This

procedure takes as parameters the real numbers a,b,c,d,e,f, where the first four numbers define the

two complex numbers a+i*b and c+i*d whose product is to be computed, and e and f define the

complex number e+i*f which will store the result of the operation.

Solution:

Procedure product (a,b,c,d : integer; var e,f :integer);

Begin

 e:= a*c – b*d;

 f:= a*d + b*c;

end;

Exercise 8:

Write a program that prompts the user to enter 4 real values corresponding to the coordinates of 2

vectors and displays whether these vectors are orthogonal to each other or not. (Two vectors are

orthogonal if their dot product is equal to 0.) Use a function named dot_Product that returns the dot

product of the two vectors.. u⃗.v⃗=xx′ + yy′ avec: u⃗(x;y) et v⃗(x′,y′)

Solution:

program vecteurs ;

 var x1,x2,y1,y2 : real ;

 function dot_Product (a1,a2,b1,b2 : real) : real;

 begin

 dot_Product:= a1*a2 + b1*b2 ;

 end ;

begin

 writeln (‘Enter the coordinates of the first vector’) ;

 readln(x1) ; readln(y1) ;

 writeln (‘Enter the coordinates of the second vector) ;

 readln(x2) ; readln(y2) ;

 if dot_Product (x1,x2,y1,y2) = 0 then

 write (‘The vectors are orthogonal’)

 else

 write (‘The vectors are non-orthogonal’);

end.

H.Sallhi Chapter II: Functions and Procedures

31

Exercise 9:

1-Write a function named power that takes two integer parameters a and n and returns the result of

an. Then, write a program that calculates the sum s= 1+22+33+…+kk, where k is a given integer.

2-Rewrite the same program, but this time using a procedure named power.

Solution:

1- Program same;

 Var i,som,k : integer ;

 Function power (a, n : integer) : integer ;

 Var j, s : integer ;

 begin

 s:=1;

 for j= 1 to n do s:= s*a;

 power := s;

 end;

begin

 writeln (‘Enter an integer’) ;

 readln(k) ;

 sum:=0;

 for i := 1 to k do

 sum := sum + power (i,i);

 writeln(‘The same is:’, sum) ;

end.

2- Program same ;

 Var i, sum, k, pow: integer ;

 procedure power (a, n : integer; var p: integer);

 Var j : integer ;

 begin

 p:=1;

 for j= 1 to n do

 p:= p*a;

 end;

begin

 writeln (‘Enter an integer’) ; readln(k) ;

 sum:=0;

 for i := 1 to k do

H.Sallhi Chapter II: Functions and Procedures

32

 begin

 power(i , i, pow);

 som := sum + pow;

 end ;

 writeln(‘The same is : ’, sum) ;

end.

Chapter III : The

Recordings and files

H.Sallhi Chapter III : The Recordings and files

 33

3.1. Structure of Heterogeneous Data:

When it is necessary to store data of various types within the same entity, such as product details, choosing

the appropriate data structure is crucial. Unlike arrays, which require all elements to be of the same type, they

are not suitable for heterogeneous data. An effective solution is to use a data structure of the 'record' type.

This structure can contain both numeric data, such as quantity, unit price, and total price, as well as

alphanumeric data, such as reference and description. This approach allows for grouping different types of

data within a single unit, making it easier to represent and manage complex data. This heterogeneous structure

is particularly useful for applications where flexibility and diversity in data types are required, providing an

effective solution for various needs in data storage and processing.

3.2. Manipulation of Record Structures:

3.2.1 Definition:

Records are essential data structures in programming, distinct from arrays in their ability to store fields of

varying types within a single entity. Each record, also known as a 'record' in English, consists of a fixed

number of fields, each defined by the user with a specific type. This characteristic allows for the organized

representation of complex information. For example, a 'date' record may include fields such as 'day,' 'month,'

and 'year,' where 'day' and 'year' are of integer type and 'month' is of string type.

Field Type

Day Integer

Month String

Year Integer

Each field is identifiable by a clear name and is associated with a specific type that determines how the data

is stored and manipulated. This structure allows for efficient data management by facilitating access to and

modification of information relevant to a given application. Records are particularly useful in database

management systems and in application development where the diversity and complexity of information

require a structured and coherent organization.

3.2.2 Declaration:

In Pascal, a record is declared as follows, specifying the details of each field with its name and type:

Type <id_Record> = RECORD

 <field1> : <type1>;

 <field2> : <type2>;

 ...

 <fieldN> : <typeN>;

H.Sallhi Chapter III : The Recordings and files

 34

End;

Var <record_name> : <id_Record>;

With:

 <id_Record> is the identifier for the record type.

 <field1>, <field2>, ..., <fieldN> are the names of the fields.

 <type1>, <type2>, ..., <typeN> are the respective types of these fields.

 <record_name> is a variable of the type <id_Record>.

Example :

program Record_Example;

{ Declaration of the "Date" record }

Type

 Date = record

 day: Integer; { Field "day" of type integer }

 month: String[10]; { Field "month" of type string with a length of 10 characters }

 year: Integer; { Field "year" of type integer }

 end;

var

 myDate: Date; { Declaration of a variable "myDate" of type "Date" }

begin

 { Using the record }

 myDate.day:= 8; { Assigning the value 8 to the "day" field }

 myDate.month:= 'July'; { Assigning the value 'July' to the "month" field }

 myDate.year:= 2024; { Assigning the value 2024 to the "year" field }

 {Displaying the values}

 writeln('Date: ', myDate.day, ' ', myDate.month, ' ', myDate.year);

end.

Detailed Explanation:

Type Date: Defines a new record named Date.

Fields:

 day: A field of type Integer used to store the day.

 month: A field of type String[10] used to store the month, with a maximum length of 10 characters.

 year: A field of type Integer used to store the year.

H.Sallhi Chapter III : The Recordings and files

 35

Variable Declaration: myDate is declared as a variable of type Date, allowing it to store an instance of the

Date record.

Usage: The fields of the record are accessed through the myDate variable using the dot operator (.). For

example, myDate.day allows you to access and modify the value of the day field.

Display: The values of the fields are printed to the screen to demonstrate the practical use of the record.

3.2.3 Accessing Fields of a Record:

In Pascal, accessing the fields of a record differs from accessing elements in an array. While arrays are

indexed by integers to access their elements, records use field names to reference their data. The dot operator

(.) is used to access a specific field of a record from its variable:

<record_name>.<field_name>

For example, to access the ‘age’ field of a person represented by the variable P, you use the syntax P.age.

This approach provides an intuitive and direct way to handle complex data structures, allowing for clear and

direct access to each relevant element. This method is particularly useful in object-oriented programming and

data management, where code readability and maintainability are crucial. In summary, accessing the fields

of a record in Pascal is straightforward and efficient, offering a well-organized method for managing

information in software applications

Example :

program Record_Example;

type

 Person = record

 name: String;

 age: Integer;

 gender: Char;

 end;

var

 P: Person;

begin

 P.name := 'Aicha'; { Assigning the value 'Aicha' to the field "name" }

 P.age := 30; { Assigning the value 30 to the field "age" }

 P.gender := 'F'; { Assigning the value 'F' to the field "gender" }

 writeln('Name: ', P.name); { Displaying the value of the "name" field }

 writeln('Age: ', P.age); { Displaying the value of the "age" field }

 writeln('Gender: ', P.gender); { Displaying the value of the "gender" field }

end.

H.Sallhi Chapter III : The Recordings and files

 36

3.2.4 Operations on Records:

Operations on records in Pascal primarily include initialization, assigning values to fields, comparison, and

copying.

3.2.4.1 Initialization: Records can be initialized either at the time of declaration or later by assigning values

to their fields. For example:

type

 Person = record

 nom: String;

 age: Integer;

 end;

var

 P: Person;

begin

 P.nom := 'Aicha';

 P.age := 30;

end.

3.2.4.2 Assigning Values: The fields of a record can be populated with specific values using the dot operator

(.):

P.nom := 'Aicha';

P.age := 30;

3.2.4.3 Comparison: Records can be compared field by field to determine their equality or difference. For

example:

var

 P1, P2: Person;

begin

 {Initializing records }

 P1.name := 'Aicha';

 P1.age := 30;

 P2.name := 'Ahmed';

 P2.age := 25;

 { Comparing records }

 if (P1.name = P2.name) and (P1.age = P2.age) then

 writeln('The persons are identical.')

 else

H.Sallhi Chapter III : The Recordings and files

 37

 writeln('The persons are different.');

 end.

3.2.4.4 Copying: To copy a record into another, you can use the assignment operator ‘:=.’ For example:

var

 P1, P2: Person;

begin

 P1.name := 'Aicha';

 P1.age := 30;

 { Copying P1 into P2 }

 P2 := P1;

 { Displaying information of P2 }

 writeln('Name: ', P2.name);

 writeln('Age: ', P2.age);

end.

3.2.5 A table as a field of a record:

Using an array as a field in a record allows you to represent structured and complex data, such as a person's

information with a list of friends. This provides increased flexibility in handling and organizing data within

Pascal programs.For example, suppose we want to extend the Student type to include grades for the student

in 10 modules. The student's notes will be stored in an array.

Type TabNotes = array [1..10] of real ;

 Student = record

 name, surname: String;

H.Sallhi Chapter III : The Recordings and files

38

 section: Char; group: String; average: Real;

 Notes: TabNotes;

 end ;

Var E : Student

Accessing Specific Grades:

To access the 3rd Note of student E, use: E.Notes[3].

To access the 7th Note of student E, use: E.Notes[7].

Example:

program Record_Array;

type

 { Definition of the "Person" record }

 Person = record

 name: String;

 age: Integer;

 friends: array[1..5] of String; { "friends" field is an array of strings }

 end;

var

 P: Person; { Declaration of a variable of type "Person" }

 i: Integer;

begin

 { Initialization of the record fields }

 P.name := 'Aicha';

 P.age := 30;

 { Assigning values to the "friends" array }

 P.friends[1] := 'Ahmed';

 P.friends[2] := 'Adel';

 P.friends[3] := 'Walid';

H.Sallhi Chapter III : The Recordings and files

39

 { Displaying the person's information and their friends }

 writeln('Name: ', P.name);

 writeln('Age: ', P.age);

 writeln('Friends: ');

 for i := 1 to 5 do

 begin

 if P.friends[i] <> '' then

 writeln('- ', P.friends[i]);

 end;

end.

3.2.6 An Array of Records :

Using an array of records allows for the efficient management of collections of structured data in

Pascal. This approach is especially useful for representing sets of similar objects, such as students,

employees, products, etc. It simplifies the management and manipulation of complex data in

computer programs.

Example:

program Array_of_Records;

type

 { Definition of the "Student" record }

 Student = record

 name: String;

 age: Integer;

 grades: array[1..5] of Real;

 end;

var

 students: array[1..3] of Student; { Array of 3 Students }

 i, j: Integer;

begin

 { Initialize the first student }

 students[1].name := 'Aicha';

 students[1].age := 20;

 students[1].grades[1] := 85.0;

H.Sallhi Chapter III : The Recordings and files

40

 students[1].grades[2] := 90.5;

 { Initialize the second student }

 students[2].name := 'Khaled';

 students[2].age := 22;

 students[2].grades[1] := 78.0;

 students[2].grades[2] := 82.5;

 { Initialize the third student }

 students[3].name := 'Hicham';

 students[3].age := 21;

 students[3].grades[1] := 88.0;

 students[3].grades[2] := 91.0;

 { Display the students' information }

 for i := 1 to 3 do

 begin

 writeln('Student ', i, ':');

 writeln('Name: ', students[i].name);

 writeln('Age: ', students[i].age);

 writeln('Grades:');

 for j := 1 to 5 do

 begin

 if students[i].grades[j] <> 0 then

 writeln(' Grade ', j, ': ', students[i].grades[j]:0:2);

 end;

 end;

end.

3.3. The Files:

The data used in all the programs we have written primarily comes from two sources: either it is

directly embedded within the program itself or it is entered by the user during execution. Once the

program terminates, this data is lost. If the program is restarted, the same data or new data must be

re-entered. All this information has a common characteristic: it resides in the computer's main

memory. Therefore, any deletion of this memory, whether intentional or accidental, results in the

loss of this data, including the data used in the Pascal program.

Sometimes, it is essential to retain certain data after the program has finished executing, whether for

archiving purposes or for future use. In everyday life, such as in a library, a doctor's office, or in

H.Sallhi Chapter III : The Recordings and files

41

administrative settings, a file represents a collection of similar records, with no limit on the number.

These considerations lead us to introduce the concept of a file.

3.3.1. Concept of a File

The concept of a file refers to a computer entity used to store data persistently on a storage medium

such as a hard drive, USB flash drive, or any other storage device. A file can contain various types

of data, including text, images, videos, or computer programs. It is an organized collection of data

that can be read, written, modified, and deleted by a computer program.

In computing, files allow information to be preserved beyond the duration of a program's execution,

making them essential for archiving, sharing data between applications, and backing up important

documents. Each file has a unique name and an extension that indicates the type of data it contains.

Operating systems provide standardized methods for handling files, including creating, opening,

reading, writing, and closing them.

3.3.2. File Access Modes

The various methods by which a program can read or write records in a file are referred to as access

modes. When opening a file, it is essential to specify the desired access mode, which determines

how the data will be organized and handled. A file can be accessed in several ways depending on its

initial organization defined at creation.

There are three main file access methods:

 Sequential Access: Records are processed in the sequential order in which they are stored.

This mode is ideal for handling text files or logs where data is read or written in sequence.

 Direct Access: Records can be accessed directly by their number or physical address within

the file. This allows for fast and efficient operations, particularly useful for structured data

files such as databases.

 Indexed Access: This mode allows access to records based on the order of their access keys,

facilitating search and manipulation operations based on index keys. It is often used in

relational databases to optimize data retrieval and management.

It is important to note that some file types, such as sequential files, only support sequential

access, while other file types may support multiple access modes, such as both direct and

sequential access. In Pascal, you can create and manipulate different types of files, including

FILE OF for records of the same type, TEXT files for records of various types, and FILE for

files without a specific type.

3.3.3 Reading from and Writing to a File :

In Pascal, reading from and writing to a file is accomplished through specific procedures

integrated into the language. Here’s how to perform these operations with details:

H.Sallhi Chapter III : The Recordings and files

42

 Opening a File: Before performing any operations, you need to open the file using the

assign and reset (for reading) or rewrite (for writing) procedures.

assign(fileVar, 'filename.txt'); #Associate the file variable with the file

reset(fileVar); # Open the file for reading

// or

rewrite(fileVar); # Open the file for writing

 Reading from a File: To read data from a file, you use the read or readln procedures.

The read procedure reads data without advancing to the next line, while readln reads

data and advances to the next line.

read(fileVar, variable); # Read a value from the file into a variable

readln(fileVar, variable); # Read a value from the file and move to the next line

 Writing to a File: To write data to a file, use the write or writeln procedures. The write

procedure outputs data without moving to the next line, whereas writeln outputs data and

moves to the next line.

write(fileVar, value); #Write a value to the file.

writeln(fileVar, value); #Write a value to the file and move to the next line.

 Closing a File: After you have finished reading from or writing to a file, it’s important to

close the file using the close procedure to free up system resources.

close(fileVar); # Close the file

These steps demonstrate how to read from and write to a file in Pascal using the standard procedures

Assign, Reset, Rewrite, Read, ReadLn, Write, WriteLn and Close. Ensure proper error handling

and follow best practices for file manipulation to maintain data security and integrity.

Example1:

program FileExample;

var

 inputFile, outputFile: text;

 line: string;

begin

 #Opening files

 assign(inputFile, 'input.txt');

 reset(inputFile);

 assign(outputFile, 'output.txt');

 rewrite(outputFile);

Reading from input file and writing to output file

 while not eof(inputFile) do

H.Sallhi Chapter III : The Recordings and files

43

 begin

 readln(inputFile, line);

 writeln(outputFile, line);

 end;

#Closing files

 close(inputFile); close(outputFile);

end.

Example 2 :

Student practical work notes:

PROGRAM RESULTS;

TYPE

 INDIVIDUAL = RECORD

 Name: string[20];

 Surname: string[20];

 Lab1: real;

 Lab2: real;

 END;

VAR

 STUDENT: array[1..100] OF INDIVIDUAL;

 Average: real;

 I, N: integer;

 EndOfInput: Boolean;

 File1: FILE OF INDIVIDUAL;

BEGIN

 ASSIGN(File1, 'D:\students.dat');

 REWRITE(File1);

 Writeln('ENTERING DATA INTO File1');

 EndOfInput := False;

 I := 1;

 WHILE NOT EndOfInput DO

 BEGIN

 Writeln('Press ENTER to finish entering data');

 Write('NAME: ');

 READLN(STUDENT[I].Name);

 # Check to end input if Name is empty

H.Sallhi Chapter III : The Recordings and files

44

 If (STUDENT[I].Name = '') then

 EndOfInput := True

 else

 begin

 Write('SURNAME: ');

 READLN(STUDENT[I].Surname);

 Write('LAB1 SCORE: ');

 READLN(STUDENT[I].Lab1);

 Write('LAB2 SCORE: ');

 READLN(STUDENT[I].Lab2);

 WRITE(File1, STUDENT[I]);

 I := I + 1;

 end;

 END;

 Close(File1);

 Writeln('READING FILE AND CALCULATING LAB AVERAGE');

 # Reinitialize file for reading

 RESET(File1);

 I := 1;

 # Reading and calculating the average

 WHILE NOT EOF(File1) DO

 BEGIN

 READ(File1, STUDENT[I]);

 I := I + 1;

 END;

 N := I - 1; # N is the number of students

 # Displaying results

 Writeln('DISPLAYING RESULTS: PRESS ANY KEY');

 Readln;

 FOR I := 1 TO N DO

 BEGIN

 Average := (STUDENT[I].Lab1 + STUDENT[I].Lab2) / 2;

 writeln(STUDENT[I].Name, ' ', STUDENT[I].Surname, ' ', STUDENT[I].Lab1:6:2, ' ',

STUDENT[I].Lab2:6:2, ' ', Average:6:2);

 END; Close(File1);

H.Sallhi Chapter III : The Recordings and files

45

 Readln;

END.

3.4 Application exercises:

Exercise 1:

 Let's consider a database containing individuals described by the following

information:

Name, Surname, Age, City, Position

We want to organize this information in such a way that we can select individuals

based on a specific age, city, or position, etc. In general, we need to manage the database.:

We propose: T : array[1..100] of Individu;

Solution:

PROGRAM Ex1;

TYPE

 Individual = RECORD

 Name, Surname: string[20];

 Age: integer;

 City, Position: string[25];

 END;

VAR

 T: array[1..1000] of Individual;

 I, N: integer;

BEGIN

 Writeln('Enter the number of individuals: ');

 Readln(N); { N is the number of individuals }

 Writeln('Enter Name, Surname, Age, City, Position for each individual:');

 For I := 1 to N do

 begin

 Readln(T[I].Name);

H.Sallhi Chapter III : The Recordings and files

46

 Readln(T[I].Surname);

 Readln(T[I].Age);

 Readln(T[I].City);

 Readln(T[I].Position);

 end;

 Writeln('Displaying the information of the individuals:');

 For I := 1 to N do

 begin

 Write('Name: ', T[I].Name, ', ');

 Write('Surname: ', T[I].Surname, ', ');

 Write('Age: ', T[I].Age, ', ');

 Write('City: ', T[I].City, ', ');

 Write('Position: ', T[I].Position);

 Writeln;

 end;

END.

Exercise 2:

Write a Pascal program that allows:

1. Creating a file containing the following information:

 Identification number (integer)

 Name (string of 20 characters)

 Average (real number)

2. Viewing the list of students.

3. Viewing a student by identification number.

4. Viewing the list of students in descending order of their averages.

Solution:

function menu: integer;

var

 choice: integer;

begin

 writeln('1. Create the file.');

 writeln('2. View the list of students.');

 writeln('3. View a student by ID number.');

 writeln('4. View the list of students in descending order of averages.');

H.Sallhi Chapter III : The Recordings and files

47

 writeln('5. Exit the application.');

 writeln('Enter your choice:');

 readln(choice);

 menu := choice;

end;

type

 student = record

 id_num: integer;

 name: string[20];

 average: real;

 end;

var

 stu_file: file of student;

 s: student;

 response: char;

 choice, num, count, i, j: integer;

 students: array[1..10] of student;

begin

 choice := menu;

 repeat

 case choice of

 1:

 begin

 # Create the file

 assign(stu_file, 'student.dat');

 rewrite(stu_file);

 repeat

 writeln('Enter the student ID number:');

 readln(s.id_num);

 writeln('Enter the student name:');

 readln(s.name);

 writeln('Enter the student average:');

 readln(s.average);

 write(stu_file, s);

 writeln('Enter another? (y/n)');

H.Sallhi Chapter III : The Recordings and files

48

 readln(response);

 until response = 'n';

 close(stu_file);

 end;

 2:

 begin

 #View the list of students

 assign(stu_file, 'student.dat');

 reset(stu_file);

 while not eof(stu_file) do

 begin

 read(stu_file, s);

 writeln('ID = ', s.id_num, ', Name: ', s.name, ', Average: ', s.average:0:2);

 end;

 close(stu_file);

 end;

 3:

 begin

 #View a student by ID number

 writeln('Enter the student ID number:');

 readln(num);

 assign(stu_file, 'student.dat');

 reset(stu_file);

 while not eof(stu_file) do

 begin

 read(stu_file, s);

 if s.id_num = num then

 writeln('ID = ', s.id_num, ', Name: ', s.name, ', Average: ', s.average:0:2);

 end;

 close(stu_file);

 end;

 4:

 begin

 # View the list of students in descending order of averages

 assign(stu_file, 'student.dat');

H.Sallhi Chapter III : The Recordings and files

49

 reset(stu_file);

 count := 1;

 # Store records from the file into an array for sorting

 while not eof(stu_file) do

 begin

 read(stu_file, students[count]);

 count := count + 1;

 end;

 close(stu_file);

 #Sort the array in descending order of averages

 for i := 1 to count - 1 do

 begin

 for j := i + 1 to count - 1 do

 begin

 if students[j].average > students[i].average then

 begin

 s := students[i];

 students[i] := students[j];

 students[j] := s;

 end;

 end;

 end;

 # Display the sorted array

 for i := 1 to count - 1 do

 with students[i] do

 writeln(id_num, ' ', name, ' ', average:0:2);

 end;

 5:

 begin

 # Exit the application

 end

 else

 writeln('Invalid choice. Please try again.');

 end;

 if choice <> 5 then

H.Sallhi Chapter III : The Recordings and files

50

 choice := menu;

 until choice = 5;

end.

Exercise 3:

Write a Pascal program that stores the list of students from the file student into a second file student2,

after sorting the students in ascending order of their averages.

Solution:

program Sort_File;

type

 student = record

 num_id: integer;

 name: string[20];

 average: real;

 end;

var

 file1: file of student;

 file2: file of student;

 s: student;

 count, i, j: integer;

 students: array[1..10] of student;

begin

 # Open the original file for reading

 assign(file1, 'student');

 reset(file1);

 count := 0; // Initialize count to 0, since it will be incremented before storing in the array

 # Store records from the 'student' file into an array for sorting

 while not eof(file1) do

 begin

 count := count + 1; // Increment count before storing in the array

 read(file1, students[count]);

 end;

 close(file1);

 #Sort the array by ascending average

 for i := 1 to count - 1 do

 begin

H.Sallhi Chapter III : The Recordings and files

51

 for j := i + 1 to count do

 begin

 if students[j].average < students[i].average then

 begin

 s := students[i];

 students[i] := students[j];

 students[j] := s;

 end;

 end;

 end;

 #Store the sorted array into a new file 'student2'

 assign(file2, 'student2');

 rewrite(file2); // This will create the file 'student2' if it doesn't exist

 for i := 1 to count do

 write(file2, students[i]);

 close(file2);

 #Display the list of students from the file 'student2'

 writeln('List of students in the file student2:');

 assign(file2, 'student2');

 reset(file2);

 while not eof(file2) do

 begin

 read(file2, s);

 writeln('ID = ', s.num_id, ', Name: ', s.name, ', Average: ', s.average:0:2); #Display average with 2

decimal places

 end;

 close(file2);

end.

Exercise 4:

Write a Pascal program that inserts a student into the student2 file while maintaining the order of the

averages in ascending order.

Solution:

program Insert_File;

type

 student = record

H.Sallhi Chapter III : The Recordings and files

52

 num_id: integer;

 name: string[20];

 average: real;

 end;

var

 file1: file of student;

 s: student;

 count, i, j: integer;

 students: array[1..10] of student;

 inserted: boolean;

begin

 # Display the list of students from the file student2 before insertion

 writeln('List of students in the file student2 before insertion:');

 assign(file1, 'student2');

 reset(file1);

 while not eof(file1) do

 begin

 read(file1, s);

 writeln('ID = ', s.num_id, ', Name: ', s.name, ', Average: ', s.average:0:2);

 end;

 close(file1);

 #Store records from the file student2 into an array

 assign(file1, 'student2');

 reset(file1);

 count := 0;

 while not eof(file1) do

 begin

 count := count + 1;

 read(file1, students[count]);

 end;

 close(file1);

 # Read the information of the student to be inserted

 writeln('Enter the student to be inserted:');

 writeln('Enter the student ID:');

 readln(s.num_id);

H.Sallhi Chapter III : The Recordings and files

53

 writeln('Enter the student name:');

 readln(s.name);

 writeln('Enter the student average:');

 readln(s.average);

 # Insert the student into the array

 i := 1;

 inserted := false;

 while (i <= count) and (not inserted) do

 begin

 if (s.average < students[i].average) then

 inserted := true

 else

 i := i + 1;

 end;

 for j := count downto i + 1 do

 students[j] := students[j - 1];

 students[i] := s;

 count := count + 1;

 #Write the array back to the file student2

 assign(file1, 'student2');

 rewrite(file1);

 for i := 1 to count do

 write(file1, students[i]);

 close(file1);

 #Display the list of students from the file student2 after insertion

 writeln('List of students in the file student2 after insertion:');

 assign(file1, 'student2');

 reset(file1);

 while not eof(file1) do

 begin

 read(file1, s);

 writeln('ID = ', s.num_id, ', Name: ', s.name, ', Average: ', s.average:0:2);

 end;

 close(file1);

end.

H.Sallhi Chapter III : The Recordings and files

54

Exercise 5:

Write a Pascal program to delete or modify the information of a student based on a number read from

the keyboard. This involves modifying or deleting a record in the previously created student file. If

the entered number does not exist, it should be reported.

Solution:

program SchoolManagement;

function menu: integer;

var

 choice: integer;

begin

 writeln('1. View the list of students.');

 writeln('2. Modify a record.');

 writeln('3. Delete a record.');

 writeln('4. Exit the application.');

 writeln('Enter your choice:');

 readln(choice);

 menu := choice;

end;

type

 student = record

 num_id: integer;

 name: string[20];

 average: real;

 end;

var

 studentFile: file of student;

 s: student;

 choice, num, count, i, j: integer;

 students: array[1..20] of student;

 exists: boolean;

begin

 choice := menu;

 repeat

 case choice of

 1:

H.Sallhi Chapter III : The Recordings and files

55

 begin

 #View the list of students

 assign(studentFile, 'student');

 reset(studentFile);

 while not eof(studentFile) do

 begin

 read(studentFile, s);

 writeln('ID = ', s.num_id, ', Name: ', s.name, ', Average: ', s.average:0:2);

 end;

 close(studentFile);

 end;

 2:

 begin

 # Modify a record

 assign(studentFile, 'student');

 reset(studentFile);

 count := 1;

 # Store records from the file into an array

 while not eof(studentFile) do

 begin

 read(studentFile, students[count]);

 count := count + 1;

 end;

 close(studentFile);

 writeln('Enter the ID of the student to modify:');

 readln(num);

 i := 1;

 exists := false;

 while (i <= count - 1) and not exists do

 begin

 if students[i].num_id = num then

 exists := true;

 if not exists then

 i := i + 1;

 end;

H.Sallhi Chapter III : The Recordings and files

56

 if exists then

 begin

 writeln('Enter new information:');

 writeln('Enter the ID of the student:');

 readln(s.num_id);

 writeln('Enter the name of the student:');

 readln(s.name);

 writeln('Enter the average of the student:');

 readln(s.average);

 students[i] := s;

 # Store the array back into the file

 assign(studentFile, 'student');

 rewrite(studentFile);

 for j := 1 to count - 1 do

 write(studentFile, students[j]);

 close(studentFile);

 end

 else

 writeln('No student exists with the ID: ', num);

 end;

 3:

 begin

 # Delete a record

 assign(studentFile, 'student');

 reset(studentFile);

 count := 1;

 # Store records from the file into an array

 while not eof(studentFile) do

 begin

 read(studentFile, students[count]);

 count := count + 1;

 end;

 close(studentFile);

 writeln('Enter the ID of the student to delete:');

 readln(num);

H.Sallhi Chapter III : The Recordings and files

57

 i := 1;

 exists := false;

 while (i <= count - 1) and not exists do

 begin

 if students[i].num_id = num then

 exists := true;

 if not exists then

 i := i + 1;

 end;

 if exists then

 begin

 for j := i to count - 2 do

 students[j] := students[j + 1];

 # Store the array back into the file

 assign(studentFile, 'student');

 rewrite(studentFile);

 for j := 1 to count - 2 do

 write(studentFile, students[j]);

 close(studentFile);

 end

 else

 writeln('No student exists with the ID: ', num);

 end;

 4: begin end; # Exit the program

 else

 writeln('Invalid choice. Please try again.');

 end;

 if choice <> 4 then

 choice := menu;

 until choice = 4;

end.

Exercise 6:

Ecrire un programme Pascal permettant de copier un fichier texte texte.txt dans un deuxième fichier

essai.txt, ensuite de fusionner ces deux fichiers dans un troisième nommé texteglob.txt.

H.Sallhi Chapter III : The Recordings and files

58

Write a Pascal program to copy a text file texte.txt into a second file essai.txt, then merge these two

files into a third one named texteglob.txt.

Solution:

program concat_copy_file;

var

 file1, file2, file3: text;

 line: string;

begin

 assign(file1, 'texte.txt');

 reset(file1);

 if (IOResult = 0) then

 begin

 # Copy texte.txt to essai.txt

 assign(file2, 'essai.txt');

 rewrite(file2);

 while not eof(file1) do

 begin

 readln(file1, line);

 writeln(file2, line);

 end;

 close(file1);

 close(file2);

 # Concatenate texte.txt and essai.txt into texteglob.txt

 assign(file1, 'texte.txt');

 reset(file1);

 assign(file2, 'essai.txt');

 reset(file2);

 assign(file3, 'texteglob.txt');

 rewrite(file3);

 while not eof(file1) do

 begin

 readln(file1, line);

 writeln(file3, line);

 end;

 close(file1);

H.Sallhi Chapter III : The Recordings and files

59

 while not eof(file2) do

 begin

 readln(file2, line);

 writeln(file3, line);

 end;

 close(file2);

 close(file3);

 # Display the contents of texte.txt

 writeln('Contents of the file texte.txt:');

 assign(file1, 'texte.txt');

 reset(file1);

 while not eof(file1) do

 begin

 readln(file1, line);

 writeln(line);

 end;

 close(file1);

 # Display the contents of essai.txt

 writeln('Contents of the file essai.txt:');

 assign(file2, 'essai.txt');

 reset(file2);

 while not eof(file2) do

 begin

 readln(file2, line);

 writeln(line);

 end;

 close(file2);

 # Display the contents of texteglob.txt

 writeln('Contents of the file texteglob.txt:');

 assign(file3, 'texteglob.txt');

 reset(file3);

 while not eof(file3) do

 begin

 readln(file3, line);

 writeln(line);

H.Sallhi Chapter III : The Recordings and files

60

 end;

 close(file3);

 end

 else

 writeln('File texte.txt does not exist.');

end.

H.Sallhi Bibliography

61

Bibliography

1. Jean MAYSONNAVE, « Introduction à l’algorithmique générale et numérique

DEUG Sciences : Résumés de cours », Edition Masson, 1996.

2. Support de cours en Informatique 02, Algorithmique et programmation, R. BENGHEZAL,

Universite de batna2, 2020.

3. Ives GRANJON, « Tavaux dirigés - Informatique : Algorithmique en Pascal et en langage C

- DEUG Sciences : Résumés de cours », Edition Dunod, 1999.

4. Cormen, Thomas H., and Hervé Soulard. Algorithmes: notions de base. Dunod, 2013.

5. Salah FENNI, « Exercices en Turbo Pascal », Edition Chebba, 2000.

6. Cormen, Thomas H., et al. Algorithmique: cours avec 957 exercices et 158 problèmes. Dunod,

2010.

7. Olivier LECARME, « Pascal : Langages d’écriture de systèmes », Techniques de l’Ingénieur,

traité Informatique, H 2260.

8. Mueller, John Paul, and Luca Massaron. Les algorithmes pour les Nuls grand format. Pour les

nuls, 2017.

9. Adeline CREPIEUX, « Introduction à l’informatique et à la programmation », Cours de

DEUG U1, Université de la méditerranée, 2002.

10. Hugo ETIEVANT, « Cours de Turbo Pascal 7.0 : Le cours aux 100 exemples », 2004.

11. Support de cours en Informatique 02, Algorithmique et programmation, li Wided, Universite

Larbi Tebessi de Tébessa, 2022.

12. Philipe TRIGANO, Dominique LENNE, « Algorithmique et programmation », Université de

Technologie de Compiègne, 2008.

13. ChristopheDARMANGEAT, «Algorithmiqueetprogrammationpour nonmatheux

: Cours complet », Université Paris 7, 2008.

	Example 2 :

