TP-3
 SIMPLE PENDULUM

The Purpose

1/ Study the period (\boldsymbol{T}) of a simple pendulum: influence of the length (\boldsymbol{L}) of the pendulum and the amplitude (angle $\boldsymbol{\theta}$) on the period of oscillations.
2/ Measurement of the intensity of the gravitational field using a simple pendulum.

Theoretical part

We consider a simple pendulum consisting of a material point (\boldsymbol{M}) with mass \boldsymbol{m}, suspended from an inextensible, massless string of length \boldsymbol{l}.
This pendulum oscillates without friction (neglecting air resistance) in a vertical plane (figure opposite).

The mass m is displaced by an angle $\boldsymbol{\theta}_{\boldsymbol{0}}$ with respect to the vertical. The second law of Newton in a Galilean reference frame is written as:
$m \vec{\gamma}=\vec{P}+\vec{T}$
$\vec{\gamma}=$?

In the polar coordinate system, we have:

$$
\begin{align*}
\vec{v} & =\frac{d \vec{r}}{d t} / \vec{r}=r \vec{u}_{\rho} \\
\vec{v} & =\frac{d}{d t}\left(r \vec{u}_{\rho}\right)=r \vec{u}_{\rho}+r \dot{\theta} \vec{u}_{\theta} \tag{2}
\end{align*}
$$

$\vec{\gamma}=\frac{d^{2}}{d t^{2}}(\vec{r})=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(\dot{r} \vec{u}_{\rho}+r \dot{\theta} \vec{u}_{\theta}\right)$
$\vec{\gamma}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{u}_{\rho}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \vec{u}_{\theta}$.
According to (1) and (3) :
$m\left[\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{u}_{\rho}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \vec{u}_{\theta}\right]=(-T+P \cos \theta) \vec{u}_{\rho}-P \sin \theta \cdot \vec{u}_{\theta} \ldots .$.
With $r=L=c s t \Leftrightarrow \ddot{r}=\dot{r}=0$
So: (4) $\Leftrightarrow\left\{\begin{array}{l}m r \dot{\theta}^{2}=-T+P \cos \theta \\ m r \ddot{\theta}=-P \sin \theta\end{array}\right.$
For weak oscillations $\left(\theta \leq 10^{\circ}\right): \sin \theta=\theta(\mathrm{rad})$.
so:
$(5-b) \Leftrightarrow m r \ddot{\theta}+m g \theta=0 \Leftrightarrow L \ddot{\theta}+g \theta=0 \Leftrightarrow \ddot{\theta}+\frac{g}{L} \theta=0 \quad$ on pose $\mathrm{w}^{2}=\frac{g}{L} \quad$ we will have
the differential equation: $\ddot{\theta}+w^{2} \theta=0$
Whose general solution is: $\theta(t)=\theta_{1} \cos \omega t+\theta_{2} \sin \omega t$
For $\theta(t=0)=\theta_{0} \Leftrightarrow \theta_{1}=\theta_{0}$ with $\mathrm{v}(\mathrm{t}=0)=0 \Leftrightarrow[r \dot{\theta}(t)]_{\mathrm{t}=0}=0$
$\Leftrightarrow r\left[-\theta_{1} \sin w t+\theta_{2} \cos w t\right]_{t=0}$ that is $\theta_{2}=0$

Therefore $\theta(t)=\theta_{0} \cos w t \Leftrightarrow \theta(t)=\theta_{0} \cos \frac{g}{L} t$
This is the case of harmonic oscillatory motion, with its period given by:
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{L}{g}}$

Experiment

I/ Influence of the pendulum's length on the period

Attach a mass \boldsymbol{m} to the pendulum $(\boldsymbol{m}=\mathbf{3 3 g})$.
Oscillate the pendulum with a fixed angle $\boldsymbol{\theta}_{\boldsymbol{0}}\left(\boldsymbol{\theta}_{\boldsymbol{0}} \leq \boldsymbol{1 0}\right)$, measure the time $(\boldsymbol{t}=\boldsymbol{n} \boldsymbol{T})$, then calculate the period for various lengths of the string and for two numbers of oscillations ($\boldsymbol{n}_{\boldsymbol{1}}=\mathbf{1 0}$ et $\boldsymbol{n}_{2}=\mathbf{3 0}$).
Record the results in Table 1.

$\theta_{0}=7^{\circ}, \boldsymbol{n}_{1}=10, \boldsymbol{n}_{2}=30$				
$\boldsymbol{L}(\mathrm{~cm})$	20	40	70	100
$\boldsymbol{t}_{\boldsymbol{I}}=\boldsymbol{n}_{1} \boldsymbol{T}_{1}(\mathrm{~s})$				
$\boldsymbol{T}_{1}(\mathrm{~s})$				
$\boldsymbol{T}_{1}{ }^{2}\left(\mathrm{~s}^{2}\right)$				

Table 1
1/ Plot the graph $L\left(\frac{T^{2}}{4 \pi^{2}}\right)$ and determine the average value of \mathbf{g} and calculate its uncertainty with $\boldsymbol{\delta t}=\mathbf{0 . 0 2 s}$ and $\boldsymbol{\delta} \boldsymbol{l}=\mathbf{0 . 0 0 1} \mathrm{m}$.
$2 /$ Compare the results of the period \boldsymbol{T} and the value of \boldsymbol{g} for $\boldsymbol{n}_{\boldsymbol{1}}$ and \boldsymbol{n}_{2}. What can you conclude ?

II/ Influence of the angle on the period

Attach a mass m to the pendulum at a length $L(L=40 \mathrm{~cm})$.
Spread the pendulum with different angles $\boldsymbol{\theta}_{\boldsymbol{\theta}}$ and release it without initial speed and measure the time \boldsymbol{t} and calculate the period of the oscillations (for \boldsymbol{n}_{1} and \boldsymbol{n}_{2} oscillations).

Record the results in Table 2.

$L=40 \mathrm{~cm}, n_{1}=10, n_{2}=30$					
$\theta_{0}\left({ }^{\circ}\right)$	6	8	10	30	90
$t_{1}=n_{1} T_{1}(\mathrm{~s})$					
$T_{1}(\mathrm{~s})$					

Table 2
1/ Calculate g analytically for the angles that allow the application of the formula $T=2 \pi \sqrt{\frac{L}{g}}$, and calculate its uncertainty.

2/ Does the angle variation $\boldsymbol{\theta}_{0}{ }^{\circ}$ influence \boldsymbol{T} and \boldsymbol{g} ? Interpret the results.

- Conclusion

