TP N° 3 détermination du degré chlorométrique dans l'eau de javel (contrôle de qualité!)

Préparation du TP n°3 : Eau de Javel.

- Hypochlorite de sodium : formule ; nombre d'oxydation du chlore
- Thiosulfate de sodium : formule chimique, nombre d'oxydation du soufre S
- Thiosulfite de sodium : formule chimique, nombre d'oxydation du soufre S
- lode : formule chimique, nombre d'oxydation
- lodure de potassium : formule chimique, nombre d'oxydation
- Demi équation redox des couples : ClO^-/Cl^- ; I_2/I_- ; $S_4O_6^{2-}/S_2O_3^{2-}$

Rappels de quelques notions fondamentales

Ce qu'il faut savoir :

L'oxydoréduction ⇒ réaction d'échange électronique

OXYDANT₁ + REDUCTEUR₂
$$\longrightarrow$$
 REDUIT₁ + OXYDEE₂

- **Un oxydant** \Rightarrow Capteur d'électrons (KMnO₄, K₂Cr₂O₇, O₃, O₂, HNO₃,...etc)
- **Un réducteur** ⇒ Donneur d'électron (H₂, métaux, ...etc)

 \blacksquare Un oxydant est caractérisé par son potentiel d'oxydoréduction $E^0_{OX/_{RED}}$

- \Rightarrow Un oxydant puissant \Leftrightarrow Potentiel $E_{OX/_{RED}}^0 \uparrow$
- \Rightarrow Un réducteur puissant \Leftrightarrow Potentiel $E_{OX/_{RED}}^0 \downarrow$

Une réaction d'oxydoréduction est une résultante de deux demi-équations redox

$$n_2.OX_1 + n_1.RED_2 \longrightarrow n_2.RED_1 + n_1.OX_2$$

Charge réelle ou fictive portée par l'élément engagé dans une liaison ou seul (sous forme ionique ou non).

Règles générales pour déterminer le nombre d'oxydation d'un élément :

- ☑ La somme des nombres d'oxydations des éléments constitutifs d'un composé est nulle.
- \square Dans le cas d'un ion polyatomique $\sum n_0$ = charge de l'ion. (ex: $Cr_2O_7^{2-}$; $\sum n_0 = -2$)
- ✓ No de l'oxygène O (- 2) toujours, excepté dans O₂ et O₃ où il est égal à zéro, et dans les peroxydes H₂O₂ où il vaut -1.
- ☑ No de H : (+1), sauf dans H_2 (n_0 = 0), et lorsque H est lié aux métaux (n_0 = -1).
- ☑ Le nombre d'oxydation de l'élément dans un corps simple (constitué d'atomes d'un même élément) est toujours nul (ex: O₂, O₃, H₂, Na).