TP CHIMIE1

Nom	Prénom sous-groupe
	Compte rendu du TP n° 3
Types de réactions ut	ilisées
	'équation bilan de le réduction de l'ion hypochlorite par l'ion iodure ,à partir uations redox, en milieu acide.
	de CIO ⁻
Equation redox	ons spectateurs :
	· · · · · · · · · · · · · · · · · · ·
thiosulfate, milieu	e l'équation chimique bilan de la réaction de dosage de l'iode par l'ion acide (H_30^+), à partir des deux demi-équations redox, la demi-équation mi-équation de réduction.
1- Deuxième réaction A. Si l'on utilise	on bilan : e thiosulfate en milieu acide (riche en ions $H_30^{+)}$.
deuxième demi-èqu	ation de réduction
première demi-èqu deuxième demi-èqu	utilisation du sulfite. (en milieu basique : riche en ions OH-). ation de réduction

	TP CHIMIE1	· Co
🖎 Qu	uestion III : Ecrire la relation à l'équivalence lors du dosage de l'iode par le thiosul	fate.
,	A l'équivalence, on a la relation :	
I	Egalité de la quantité de matière équivalent :	
I	Egalité en fonction des normalités :	
V _{RED} =	$=$; N_{RED} =eq/L. \Rightarrow $neq_{(RED)}$ = =	
⇒ neq	$q_{(OX)} =$ eq. \Rightarrow $neq(I_2) = 1,3.10^{-3} eq$	
	\Rightarrow Nombre de mole de $I_2 = \dots \dots$ mole.	
	2	
	En déduire la concentration molaire de l'iode dosée.	
La con	ncentration molaire d'iode $C_{I_2} = \frac{nombre\ de\ mole}{prise\ d'essai} = C_{I_2} = = \dots \mod/L$.	
	prise a cosal	
» Ou	uestion IV : Déterminer le degré chlorométrique de l'eau de Javel ayant fait l'objet	de cette
	ude. Comparer avec l'étiquette, conclure.	de celle
0 10 .		
	Remonter à la concentration molaire de l'ion hypochlorite dans l'eau de Javel :	
	C_{clo} -(eau de javel) = \cdots = \cdots mol/l	
	⇒ Convertir en litre de gaz chlore (Cl₂) par 1 litre d'eau de Javel (c'est le degré	
	chlorométrique).	
	emorometrique).	
	Utiliser le volume molaire des gaz parfaits (1 mole de gaz : 22,414 litres)	
	Conclusion:	